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1. INTRODUCTION 

The purpose of this paper is to present a new 
method for incorporating thermal effects into 
the calculated performance of laminar lubricat- 
ing films. There is enormous interest in the 
inclusion of such effects, as the recent reviews 
of Khonsari (1.2) attest. The reason for this 

m interest is well founded, since the viscosity- 
= temperature dependence of typical lubricants is 
A such that the viscosity can vary many fold 

across and along a bearing film, with attendant 
effects on load capacity. 

remove the need here for a survey of prior lit- 
erature, and reference will be made principally 
to those works used for comparative purposes. 
Suffice to say that earlier theoretical contri- 
butions on the subject of thermohydrodynmic 
lubrication divide themselves roughly into two 
categories. In the first category are those 
which embody a full transverse (cross-film) 
treatment of the energy equation using finite- 
difference or finite-element methods, and in 
the second category are those which incorporate 
rather drastic approximations to the transverse 
phenomena, usually representing the local film 
temperature distribution by a single value. 
Both approaches certainly possess merit. 
the first approach obtains accuracy at the 
expense of computational speed, and the second 
obtains speed at the expense of accuracy. 

We shall show here that if just two temper- 
atures, chosen at "Lobatto points", are used to 
characterize the transverse temperature distri- 
bution in a laminar lubricating film, the 
effects of that distribution can be surprisingly 
well predicted. The calculations we have 
so-far performed have been directed solely 
towards demonstrating this fact, and only Ndi- 
mentary numerical methods have been used in the 
plane of the film. 
computation times can yet be reported. 
believe the technique will prove to be quite 
suitable for practical calculations. 

In the present analysis, fluid properties 
are taken as constant and uniform, except for 
the viscosity. 
laminar, with negligible inertia effects. The 
fluidity (reciprocal viscosity) is represented 
by a polynomial in terms of position across the 
film, with coefficients related to the local 
film temperature distribution. 
procedure permits a closed-form expression for 
the local lineal mass flux, albeit there is some 
difference between a fluidity profile which 
would everywhere correspond to the temperature 
profile and one which is thus approximated. 
The Lobatto-point temperatures, or mathematical 
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The up to date, extensive reviews in (1.2) 

But 

Accordingly, no meaningful 
But we 

The flow is presumed to be 

Use of this 

equivalents, appear in two simultaneous partial 
differential equations obtained from the basic 
energy equation by a Galerkin procedure. 

Implementation of the present approach has 
involved considerable tedious algebra, which, 
however, once done, causes no further embarrass- 
ment. The procedure should conveniently couple 
with cavitation algorithms, and preliminary 
testing indicates that no special handling is 
required to cope with moderate recirculation at 
film entry. Uoreover, it can accomnodate to 
some extent the temperature streaking from hot- 
oil carryover. We therefore expect to be able 
to exploit its use in a number of interesting 
directions. 
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specific heat at constant pressure, J/kg-K 

film thickness, m 

Cartesian tensor index 

Cartesian tensor index 

thermal conductivity, J/m2-(K/m) 

lineal mass flux, kg/m-s 

Legendre polynomial, ith order (PO = 1; 
P1 = c; P2 = (3C2 - 1)/2 
pressure, Pa 

temperature, K 

time, s 

x-wise velocity, m/s 

y-wise velocity, m/s 

i-th component of fluid velocity vector, 
m/s 

z-wise (cross-gap) velocity, m/s 

Lobatto weight function for i-th quadrature 
position, Ci 

lateral coordinate in direction of surface 
motion, m 

lateral coordinate transverse to surface 
motion, m 

coordinate perpendicular to gap 
midsurface, m 



fluidity functions (see Table I) 

fluidity functions (see Table I) 

fluidity functions (see Table I) 

fluidity functions (see Table I) 

dimensionless coordinate transverse to 
film, 2z/h 

fluid viscosity. N-s/m2 

thermal diffusivity. m2/s 

fluidity functions (see Table I) 

fluidity (reciprocal viscosity), mlN-s 

fluid density, kg/m3 

fluidity functions (see Table I) 

dissipation function, S/m3-s 

fluidity functions (see Table I) 

3 .  BASIC EQUATIONS 

In the absence of gravity, the momentum equation 
for a Newtonian fluid without dilational vis- 
cosity is: 

where repeated subscripts imply sumnation. 
And the corresponding energy equation is: 

where: 

L a  aT 
Dt = at + 'j d.j 

is the time derivative following the fluid 
(Lagrangian derivative) and: 

13.031 

is the dissipation function. 

momentum and heat is usually much less than 
transverse. Furthermore, inertia and pressure- 
energy effects are frequently negligible, and 
the transverse variation of pressure is small. 
Therefore, we adopt the following equations for 
laminar lubricating films. 

In lubricating films, lateral diffusion of 

and : 

13.051 

In these equations we shall treat the fluid vis- 
cosity as temperature dependent, and treat other 
fluid properties as constant. 

To these equations must be added the mass 
continuity equation for an incompressible fluid. 
Thus: 

+ +  
v . v = o  13.071 

The coordinate system used with these equat- 
ions is defined in Fig. 1. For convenience, a 
reference surface is taken midway between the 
film walls. A local coordinate system is sub- 
stituted for a fixed Cartesian system, with the 
local x-y plane tangent to this reference surface. 
The film walls are rigid, but may be moving. 

The Galerkin-style analysis used here involves 
the expansion of the temperature in a truncated 
series of Legendre polynomials. Satisfaction is 
required of as many moments of the energy equation 
as there are unknowns in this series. The ensuing 
partial differential equations for the Legendre 
components are then solved. In the present treat- 
ment, only two unknown components are used. And 
for these it is feasible to carry out explicit 
integration, as follows: 

a at JT dz + /uT dz + $JT dz 

13.091 

All of the above integrals are taken from 
the "bottom" to the "top" of the film. The sub- 
scripts and -2 are used to denote the upper 
and lower walls, respectively. The coordinate 
"z" is measured from the midplane. Continuity 
has been used to convert transverse velocity 
constructs to lateral constructs, wherever 
possible. 

4 .  LOBATTO POINTS; DISTRIBUTION FORMULAS 

An expression for the lineal mass flux can be 
developed directly from Eq. [3.051. (See, for 
example, Dowson and Hudson (3)). But the con- 
vective terms in Eq. 13.061 involve integrals 
of the velocity-temperature product, and so 
require detailed knowledge of the respective 
distributions. Such information for the veloc- 
ity is already available. For the temperature. 
we must develop our own expression. 

to the cup-mean energy flow in the x-direction. 
Let the temperatures on the two walls be known, 
and the velocity be available where needed. If 
two sampling positions for the temperature -- 
and only two -- are to be allowed for estimating 
this integral. where should these positions be 
chosen? 

Consider the integral luT dz which relates 

Without knowledge of end-point values, 
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Location, 
Ci 

Weight, Subscript 
wi 

1/6 1 l& I 5/6 1 1 
-1/& 

1 
516 -1 
116 -2 

l1 C4 dC = 0.4 (exact = 2/5) 
- 
c- 

,-- 

The temerature distribution which passes 
through the Lobatto-point values is most easily 
expressed in terms of an expansion in Legendre 
polynomials. Thus, if we write: 

3 
T(C) = ykPk(O 

k=O 
14.011 

then the Legendre coefficients are easily 
evaluated by integration. 

Or : 

The linear set of equations in 14.031 can be 
solved for the 
modes of description of the temperature distri- 
bution in the lubricating film. The Ti give 
us detail, and the Ti-give us overall proper- 
ties. In particular, To is the space-mean 
temperature at the point (x,y) and is the 
first moment. 

Ti. providing us with two 

For N = 2: 

T2 + T-g - (T1 + 

T3 = IT2 - T-2 - e (T1 - T-l) 4 14.071 ti - 
In these expressions, the wall temperatures T2 
and T-2 are considered as known for purposes 
of the film calculation. It is then useful to 
note that: 

T + T  - 
T =- - -  14.081 2 2 TO 

14.091 

An expression for the fluidity might be 
developed a number of ways. Here we collate the 
fluidity with the temperatures at the Lobatto 
points; that is, at the walls and at two inte- 
rior points. The Legendre expansion for the 
fluidity is then developed in a manner com- 
pletely analogous to that for the temperature. 
For example, 

yo = + 5€-1 + 5t1 + t2)/12 14.101 

and the fluidity distribution is: 

3 

k=O 
5 = c ^ikPk(C) 14.111 

5. VELOCITY EXPRESSIONS; MASS FLUX 

A double integration of Eq. 13.051 (with 
E ii 11n) gives the tanRentia1 velocity vector. 
Thus: 

and : 

15.031 

In view of the Legendre expansion for t ,  15.021 
can be alternatively written as: 

Now to obtain the lineal mass flux, the 
velocity expression 15.011 is integrated again 
across the passage, with the result: 
+ 

+ + h 2 - + h  p = ( V  + V  ) - - - E A - - ' i ( T  + 2 ? )  - 2 - 2 2  3 1 2  3 0 5 2  
T1 = IT2 - T-2 + fi (T1 - T-l)l/ 4 14.051 

15.051 
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Simplification gives the following more recog- 
nizable expression: 

Here the fluidity parameters ri are the vehi- 
cle for the temperature-flow interaction. The 
parameter represents asymnetry of the 
fluidity distribution. It is interesting to 
note that for symmetric temperature (and fluid- 
ity) distributions. the & effect of temper- 
ature on the mass flow is through the arithmetic 
average of the fluidities at the Lobatto points. 
This result is a special case of the following 
formula applicable for any synunetric cross-film 
temperature distribution: 

For such cases, Eq. 15.071 justifies the effec- 
tive viscosity concept, and shows the relative 
importance of the temperatures near the walls. 

expression 15.061 leads to a generalized 
Reynolds equation, the divergence of the mass 
flux involving spatial derivatives of pressure. 
Thus: 

Mass continuity applied to the mass flux 

15.081 
P 

The first moment of the energy equation 
involves the velocity, w. With a little 
care, this velocity can be found via mass con- 
tinuity. We have: 

aw + +  
15.091 az 

Transforming coordinates from (x.y.2) to (x,y,C) 
we find: 

(Here the velocity vector is understood to con- 
sist only of (u,v).) Substituting this result 
into 15.091 and integrating, we get: 

f5.111 

Finally, integrating by parts, we obtain: 

The expressions for the tangential and cross 
velocities will be essential for evaluating the 
contributions to convective heat transfer. 

6. THE TEMPERATURE EQUATIONS 

With the aid of Legendre series for the temper- 
ature and fluidity, we are now in a position to 
evaluate the integrals appearing in the zeroth 
and first moment of the energy equation; namely, 
Eqs. 13.081 and 13.091. Implementation is 
straightforward, but tedious. All requisite 
coefficients are given in Table I. 

Equation 13.081 becomes: 

+ - Co 16.011 
pcP 

where Yo" stands for the collection of 
terms: 

3 
$ 5 c s k  + f +$J 16.021 

k=O k=O 

The temperature YO appearing here is the 
(-space mean temperature, and not the mixed- 
cup temperature. 

The integral of the dissipation function is: 

+ +  
2y0A2 + Yl (2A B) 

Equation 13.091 becomes: 

where "C1" stands for the terms: 

The moment of the dissipation function is: 

4 



Equations 16.011 and 16.041 are two simul- 
taneous partial-differential equations in the 
two variables, To and TI. Where they appear, 
T2 and y3 can be eliminated via Eqs. L4.081 
and 14.091 in favor of these dependent variables. 
Coupled with the generalized Reynolds Eq. 15.071, 
they provide our approximate thermohydrodynamic 
treatment for laminar films. 

As mentioned previously, our numerical tech- 
niques for dealing with these differential equa- 
tions have so far been extremely simple. The 
steady-state solutions to be presented in the 
next section were found by solving the foregoing 
equations in their transient form, and no study 
has been made of the possibilities for economy 
in the fluidity evaluations. Prior to this 
work, enough success has been obtained by others 
with analyses which neglect entirely any cross- 
film viscosity variations so that it seems 
unlikely that it will prove necessary to update 
the terms in Table I at every step of a solution. 

- 

7. RESULTS FOR THE INFINITELY-WIDE SLIDER 
BEARING 

In 1963, Dowson and Hudson (3) performed some 
finite-difference calculations on the infinitely- 
wide flat slider bearing, including variable- 
property effects. They employed 100 increments 
along the length of the bearing, and a minimum 
of 20 increments transversely. These investiga- 
tors were concerned with the relative effects of 
density and viscosity variations upon load cap- 
acity, with the effects of solid-fluid thermal 
interaction, and with the possibilities for load 
support from parallel surfaces. Their findings 
serve as basis for our assumption of a constant- 
density fluid, and two special cases of their 
exploratory calculations will be used here for 
direct numerical comparisons. 

Hudson were as follows (SI units): 

Density: 1.7577~10~ kg/m3 
Thermal diffusivity: 7.306~10-8 m2/s 
Viscosity: q = 0.13885*exp-0.045(T-311.11)) 
Pas 
Lubricant entrance temperature: 311.11 K 

Wall temperatures: Uniformly at 311.11 K 
Runner velocity: 31.946 m/s 
Bearing length: 0.18288 m 
Uinimum gap: 0.00009144 m 

In the first case for comparison, the film 
thickness ratio is 2/1. Figures 2 and 3 show 
the velocity and temperature profiles obtained 
by us at the entrance, at 0.65 of the length, 
and at the exit. Figure 4 shows the correspond- 
ing pressure profile along the length of the 
bearing. Included in this last figure is the 
profile that would result if the entrance value 
of viscosity persisted throughout the film. The 
circles were read from the Dowson-Hudson curves, 
and the agreement is almost within reading 
accuracy. 
ture contours. 

In the second case, the bearing surfaces 
are parallel. The possibility of load support 
through a "viscosity wedge" is being explored. 
Figure 6 compares pressure distributions. 
Again, excellent agreement is achieved. We 
note parenthetically that Dowson and Hudson 

The fluid properties used by Dowson and 

Figure 5 compares predicted tempera- 

demonstrated that, with more realistic wall 
boundary conditions for the temperature, the 
above-shown load support vanishes. 

Finally, Figs. 7 to 9 show the velocity, 
temperature and pressure profiles for a flat 
slider with 411 film-thickness ratio. These 
calculations were performed to test the sen- 
sitivity of the analysis to flow reversal at 
the entrance. As mentioned earlier, such 
reversal can cause problems for point-by-point 
prediction methods. 
comparisons with other investigations. 

8 .  CONCLUSIOUS 

A Galerkin-type analysis has been made of tem- 
perature effects in laminar lubricating films. 
The procedure capitalizes on the suitability of 
so-called "Lobatto points" for sampling of the 
temperature distribution. Preliminary indica- 
tions are that the use of just two such sampling 
points enables satisfactory prediction of bear- 
ing performance even in the presence of sub- 
stantial viscosity variation. 

The procedure described herein yields two 
partial differential equations, one for the 
local space-mean temperature, and one for the 
first transverse moment of the temperature dis- 
tribution. These temperature equations are 
coupled to a generalized Reynolds equation. 
Results have been presented for the steady- 
state, infinitely-wide flat slider bearing, and 
comparisons with the earlier, detailed work of 
Dowson and Hudson are very encouraging. The 
procedure is quite general, and our intent is 
now to refine the numerical techniques, and to 
carry out calculations for more realistic con- 
figurations and boundary conditions. 
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TABLE I. - FLUIDITY FUNCTIONS 

a = 2(2y0 - yl + y2/5)[3 
a = 2(r - 2y1/5 + y3/35)/3 
a = 2(r - 2r /7)/15 
a = 2(r - 2y3/3)/105 

0 

1 0 

2 0 2 

3 1 

yo = 2(Y0 - Y2/5)/3 
y1 = 2(5y0 - yl - 2y3/7)/15 
y2 = 2(2Y0 - r2/7)/15 
y = 2(1 - r /9)/35 3 1 3  

6 

6 

52 = 2(4y1 - y3)/105 

= 2(Y 13 - Y3/7)/5 
= 2(-7 /5 + y /3 - 4Y2/35)/3 

I = 2(r0 + r2/31/35 

0 1 

1 0 1 

3 
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FIGURE 1.- COORDINATE DEFINITIONS FOR SLIDER BEARING. 
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FIGURE 2.- X-VELOCITY VERSUS POSITION IN GAP. 



350 

340 

Y 

330 
b 

W cz 
3 c 
U 3 320 
SE w + 

310 

300 
0 

2.5 

2.0 a a 
b 

h 
I 
2 1.5 
X 
L 

W cz 

cn 
W cz a 

b 

1.0 

.5  

0 

.2 . 4  .6 .8 
P O S I T I O N  I N  GAP,< 
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